A Double Parameter Scaled Modified Broyden-Fletcher-Goldfarb-Shanno Method for Unconstrained Optimization

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating the Parameters of the Negative-Lindley Distribution using Broyden-Fletcher-Goldfarb-Shanno

Problem statement: The Maximum Likelihood Estimation (MLE) technique is the most efficient statistical approach to estimate parameters in a cross-sectional model. Often, MLE gives rise to a set of non-linear systems of equations that need to be solved iteratively using the Newton-Raphson technique. However, in some situations such as in the Negative-Lindley distribution where it involves more t...

متن کامل

A New Scaled Hybrid Modified BFGS Algorithms for Unconstrained Optimization

The BFGS methods is a method to solve an unconstrained optimization. Many modification have been done for solving this problems. In this paper, we present a new scaled hybrid modified BFGS. The new scaled hybrid modified BFGS algorithms are proposed and analyzed. The scaled hybrid modified BFGS can improve the number of iterations. Results obtained by the hybrid modified BFGS algorithms are com...

متن کامل

A Parallel Quasi-Newton Method for Gaussian Data Fitting

We describe a parallel method for unconstrained optimization based on the quasi-Newton descent method of Broyden, Fletcher, Goldfarb, and Shanno. Our algorithm is suitable for both single-instruction and multiple-instruction parallel architectures and has only linear memory requirements in the number of parameters used to ®t the data. We also present the results of numerical testing on both sin...

متن کامل

The Algorithms of Broyden-CG for Unconstrained Optimization Problems

The conjugate gradient method plays an important role in solving large-scaled problems and the quasi-Newton method is known as the most efficient method in solving unconstrained optimization problems. Therefore, in this paper, the new hybrid 2592 Mohd Asrul Hery Ibrahim et al. method between the conjugate gradient method and the quasi-newton method for solving optimization problem is suggested....

متن کامل

On the Global Convergence of the PERRY-SHANNO Method for Nonconvex Unconstrained Optimization Problems

In this paper, we prove the global convergence of the Perry-Shanno’s memoryless quasi-Newton (PSMQN) method with a new inexact line search when applied to nonconvex unconstrained minimization problems. Preliminary numerical results show that the PSMQN with the particularly line search conditions are very promising.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studies in Informatics and Control

سال: 2019

ISSN: 1220-1766,1841-429X

DOI: 10.24846/v27i2y201801